Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

MAY - 2023

DESIGN AND ANALYSIS OF ALGORITHMS

(Common for CSE, IT)

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks							
1	a)	Define time complexity? Describe different	L2	CO1	7 M							
		notations used to represent these complexities.										
	CO1	7 M										
	b) Determine the space complexity of the below L3 CO1 7 M Algorithm											
		Algorithm (A, B, m, n)										
		For $I: = 1$ to m do										
		For $j := 1$ to n do										
		C[I,j] = A[I,j] + B[I,j]										
		}										
		}										
		}										
		1	I	L								
2	a)	Write an algorithm to check the given number is	L2	CO1	7 M							
		Armstrong or not.										
		Page 1 of 4			•							

II B.Tech - II Semester – Regular / Supplementary Examinations

Code: 20CS3403, 20IT3403

Max. Marks: 70

	1 \		T C	act								
	b)		L3	CO1	7 M							
		Complexity of the following algorithm.										
		for(i = n; i >= 1; i - = k)										
		{										
		print "Hello";										
		}										
		Note: here <i>k</i> is some constant										
	UNIT-II											
3	a)	Construct tree of calls for the given array using	L3	CO3	7 M							
		merge sort										
		{`S`, `I`, `D`, `D`, `H`, `A`, `R`, `T`, `H`, `A` }										
		Derive the time complexity of merge sort.										
	b)	Find the minimum and maximum values for the list	L3	CO3	7 M							
		of elements 23,45,-32,78,54,12,39,86,77,21 using										
		divide and conquer method.										
		OR										
4	a)	Consider the array of elements and search the	L3	CO3	7 M							
		element 55 using binary search										
		25,35,45,55,65,66,67,75,76,77,78,86,87.										
		Derive the time complexity of binary search.										
	b)	Using strassen's matrix find the multiplication	L4	CO3	7 M							
	,	matrix for the below matrices										
		$A = \begin{bmatrix} 3 & 6 \\ 2 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 3 \\ 2 & 8 \end{bmatrix}$										
		Derive the time complexity by solving it's										
		recurrence relation.										
5		UNIT-III Write on algorithm for prim's method and find the	ΤΛ	CO2	7 M							
5	a)											
	minimum cost spanning tree for the following graph											

	T		1	1							
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
	b)	Write an algorithm to perform single source shortest path with an example.	L2	CO2	7 M						
OR											
6	a)	Write an algorithm for krushkal method with an example graph.	L2	CO2	7 M						
	b)	Construct optimal schedule for the following jobs n=8, (p1,p2,p3,p4,p5,p6,p7,p8)=(40,100,50,30,4,7,12,11)	L4	CO2	7 M						
		and $(d1,d2,d3,d4,d5,d6,d7,d8) = (1,4,2,3,3,2,2,1)$									
	UNIT-IV										
7	a)	Compare and contrast divide and conquer, greedy and dynamic programming problem solving strategies. Define Principle of Optimality.	L4	CO4	7 M						
	b)	solution for given problem n=5,m=26,profits(P1,P2,P3,P4,P5)=(23,24,15,13,16) and weights (W1,W2,W3,W4,W5)= (11,12,8,7,9).	L3	CO4	7 M						
	T	OR	1								
8	a)	Find all pairs shortest paths for the following graph and write the algorithm. $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & $	L3	CO4	7 M						

	b)	Explain the Travelling Sales person problems with								CO4	7 M
		an example and analyze its recurrence relation.									
UNIT-V											
9	a)	Explain briefly about N-Queens Problem. Construct									7 M
		state space tree for placing 4-Queen's.									
	b)	Consider the following matrix and find optimal tour								CO4	7 M
		by using travelling sales person problem by using									
		branch and bound									
			8	11	10	9	6				
			8	∞	7	3	4				
			8	4	∞	4	8				
			11	10	5	∞	5				
			6	9	5	5	∞				
OR										<u> </u>	
10	a)	If the portion	of s	solut	tion	spa	ce f	or an 8-queens	L4	CO4	7 M
		problem is given as (7, 1, 4, 6), then identify the									
	remaining portion of solution space. Use back										
		tracking to solve	e the	pro	blen	n.					
	b)	b) Consider the sum of subset problem n=4, sum=13,								CO2	7 M
	and $w_1=3$, $w_2=4$, $w_3=5$ and $w_4=6$. Solve the problem										
	using backtracking.										