Code: 20CS3403, 20IT3403

II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

DESIGN AND ANALYSIS OF ALGORITHMS
 (Common for CSE, IT)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.
$\underline{\mathrm{BL}}$ - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Define time complexity? Describe different notations used to represent these complexities. Illustrate with suitable examples.	L2	CO1	7 M
	b)	```Determine the space complexity of the below Algorithm Algorithm (A, B, m, n) { For I: = 1 to m do { For j:= 1 to n do { C[I,j]=A [I, j] + B [I,j] } } }```	L3	CO1	7 M
OR					
2	a)	Write an algorithm to check the given number is Armstrong or not.	L2	CO1	7 M

	b)	Apply the step Count method to find the time Complexity of the following algorithm. ```\(\operatorname{for}(i=n ; i>=1 ; i-=k)\) \{ print" Hello"; \}``` Note: here k is some constant	L3	CO1	7 M
UNIT-II					
3	a)	Construct tree of calls for the given array using merge sort \{‘S', 'I', 'D', ‘D', 'H', ‘A', ‘R', ‘T', ‘H', ‘A'\} Derive the time complexity of merge sort.	L3	CO3	7 M
	b)	Find the minimum and maximum values for the list of elements $23,45,-32,78,54,12,39,86,77,21$ using divide and conquer method.	L3	CO3	7 M
OR					
4	a)	Consider the array of elements and search the element 55 using binary search $25,35,45,55,65,66,67,75,76,77,78,86,87$. Derive the time complexity of binary search.	L3	CO3	7 M
	b)	Using strassen's matrix find the multiplication matrix for the below matrices $A=\left[\begin{array}{ll} 3 & 6 \\ 2 & 6 \end{array}\right] B=\left[\begin{array}{ll} 4 & 3 \\ 2 & 8 \end{array}\right]$ Derive the time complexity by solving it's recurrence relation.	L4	CO3	7 M

UNIT-III

| 5 | a) | $\begin{array}{l}\text { Write an algorithm for prim's method and find the } \\ \text { minimum cost spanning tree for the following graph }\end{array}$ | L4 | CO2 | 7 M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	b)	Write an algorithm to perform single source shortest path with an example.	L2	CO 2	7 M
OR					
6	a)	Write an algorithm for krushkal method with an example graph.	L2	CO 2	7 M
	b)	Construct optimal schedule for the following jobs $\begin{aligned} & \mathrm{n}=8, \\ & (\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5, \mathrm{p} 6, \mathrm{p} 7, \mathrm{p} 8)=(40,100,50,30,4,7,12,11) \\ & \text { and }(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5, \mathrm{~d} 6, \mathrm{~d} 7, \mathrm{~d} 8)=(1,4,2,3,3,2,2,1) \end{aligned}$	L4	CO2	7 M
UNIT-IV					
7	a)	Compare and contrast divide and conquer, greedy and dynamic programming problem solving strategies. Define Principle of Optimality.	L4	CO 4	7 M
	b)	Using 0/1 knapsack approach, find the optimal solution for \quad given	L3	CO4	7 M
OR					
8	a)	Find all pairs shortest paths for the following graph and write the algorithm.	L3	CO4	7 M

